A Note for Extension of Almost Sure Central Limit Theory
نویسندگان
چکیده
for any continuity point x of H . Several papers have dealt with logarithmic limit theorems of this kind and the above relation has been extended in various directions. Fahrner and Stadtmüller [5] gave an almost sure version of a maximum limit theorem. Berkes and Horváth [2] obtained a strong approximation for the logarithmic average of sample extremes. Berkes and Csáki [1] showed that not only the central limit theorem, but every weak limit theorem for independent random variables has an analogous almost sure version. For stationary Gaussian sequences with covariance rn, Csáki and Gonchigdanzan [3] proved an almost sure limit theorem for the maxima of the sequences under the condition rn log n(log logn) 1+ε = O(1). For some dependent random variables, Peligrad and Shao [7] and Dudziński [4] obtained corresponding results about the almost sure central limit theorem.
منابع مشابه
A Note on the Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Partial Sums of Certain Stationary Gaussian Sequences*
Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملA Note on the Almost Sure Central Limit Theorem for Partial Sums of ρ−-Mixing Sequences
Let { } n n N X ∈ be a strictly stationary sequence of ρ−-mixing random variables. We proved the almost sure central limit theorem, containing the general weight sequences, for the partial sums n n S σ , where ∑ n i i S X 1 = = , n n S σ 2 2 E = . The result generalizes and improves the previous results.
متن کاملA Note on Almost Sure Central Limit Theorem in the Joint Version for the Maxima and Sums
Let {Xn;n ≥ 1} be a sequence of independent and identically distributed i.i.d. random variables and denote Sn ∑n k 1 Xk , Mn max1≤k≤nXk . In this paper, we investigate the almost sure central limit theorem in the joint version for the maxima and sums. If for some numerical sequences an > 0 , bn we have Mn − bn /an D → G for a nondegenerate distribution G, and f x, y is a bounded Lipschitz 1 fun...
متن کاملAlmost sure central limit theorems on the Wiener space
In this paper, we study almost sure central limit theorems for sequences of functionals of general Gaussian elds. We apply our result to non-linear functions of stationary Gaussian sequences. We obtain almost sure central limit theorems for these non-linear functions when they converge in law to a normal distribution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007